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Songlin Wei, Guodong Chen˚, Wenzheng Chi˚, Zhenhua Wang, and Lining Sun

Abstract—Semantic SLAM with a monocular camera is
particularly attractive because of the deployment simplicity
and economic availability. Data association problem which
assigns unique identities for objects shown in multiple
frames plays a fundamental role in semantic slam. Previous
prevalent methods which mainly focused on associating
geometric KeyPoints are no longer suitable. Some naive
methods that rely on object distance or 2D/3D Intersection
over Union are also vulnerable when occlusions happen.
In this paper, we propose a novel data association method
for cuboid landmarks based on Dirichlet Process Mixture
Model. By jointly considering object class, position, and
size, our method can perform data association robustly.
We evaluated our method in simulated datasets, public
benchmark KITTI and on a real robot in an office environ-
ment. Experimental results show that our method not only
associates cuboids robustly but also achieves SOTA pose
estimation accuracy in monocular SLAMs.

Index Terms—Cuboid object detection, Data association,
Monocular SLAM, Semantic SLAM

I. INTRODUCTION

S
IMULTANEOUS localization and mapping (SLAM) is a

fundamental problem being researched for mobile robots

[1] [2], autonomous driving vehicles [3] [4], and industrial ma-

nipulators [5] [6]. In recent years, computer vision community

has developed a mount of object detectors using monocular

images. With the development of deep learning technology,

monocular semantic slam that combines SLAM with object

detection, recognition and reconstruction has become the most

active research field. Instead of representing the environment

with only geometrical shapes, semantic slam can also attach

semantic information to the map, for example, object cate-

gories, functional usages, semantic relationships, etc. Object

categories can be obtained through object detectors like [7],

then object functionalities and relationships can further be

acquired through a knowledge base [8]. Theoretically, this

neglected semantic information might make object data as-

sociation easier [1].

Correct data association which matches detected objects

to map landmarks is critical. Ambiguous data association

could lead to significant localization drift and even false loop
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75% apple

(a) Ambiguous Detections

65% orange

(b) Misclassification

(c) Correct Cuboid Detections (d) Succesful Mapping Results

Fig. 1: (a) Two apples are closely placed together, the 2D

object detector failed to separate them. (b) The object detector

occasionally produces a false class prediction. For example, it

outputs an orange label for an apple. (c) Our data association

method can handle the aforementioned situations and yields

the right cuboid detections. (d) The optimized camera trajec-

tory along with detected cuboid classes, shapes, and positions.

detection, which would lead to catastrophic mapping failure

[2]. Due to the lack of accuracy when estimating depth with a

single camera, 3D object detection using a monocular image

is challenging [3]. In monocular SLAM, objects are often

represented as cuboids. The difficulties of associating cuboids

are twofold. First, the cuboid detection with monocular image

is an ill-posed problem and thus could easily produce sub-

optimal results. Second, in scenes where massive occlusions

happen, the naive method using 2D Intersection over Union

(IoU) or distance only could make false associations. Con-

sequently, the erroneous constraints provided by these false

associations could be detrimental to the tracking.

To achieve robust data association in monocular SLAM,

we propose a novel method based on the Dirichlet process

clustering approach and further unifies object location, shape,

and semantic label information in the data association. Our

main contributions are listed as follows:

‚ Based on the clustering with Dirichlet process mixture

model, we apply the probabilistic cuboid measurement

to associate objects. The algorithm can associate objects

robustly in ambiguous environments.
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Fig. 2: Key steps of our system: (1) Visual odometry with consecutive frames. (2) Detect 2D bounding boxes with start-of-the-

art detectors YOLO2. (3) Detect 3D cuboids using 2D boxes and odometry based in Vanishing Point technique. (4) Perform

scale alignment with 3D map points and data association of cuboid landmarks. (5) Consistent mapping with semantic objects

as 3D cuboids along with sparse map points.

‚ The cuboids are included as a new type of vertex in the

pose graph of SLAM optimization. The cuboids not only

can help reduce scale drift but also boost the performance

of loop closing.

The rest of this paper is organized as follows. Section II

reviews the related work and overviews how our approach

contributes further. The proposed data association method is

described in detail in Section III. We conduct a series of

experiments and discuss the results in Section IV and finally

draw conclusions in Section V.

II. RELATED WORK

A. Object SLAM

Semantic information is demanded in SLAM systems to

enable high-level user interaction and agent intelligence. Se-

mantic segmentation and object detection are two common

ways to produce semantics in the map. For example, Chen

et al. [9] used a semantic segmentation network to label the

projected image of the point cloud to create semantic maps.

In this paper, we mainly focus on object detection. Recent

researchers studied the integration of object detectors and

SLAM. Pillai and Leonard [10] proposed to incorporate multi-

view information of SLAM to help object recognition. Zhong

et al. [11] tightly coupled object detector and SLAM to build

an instance-level semantic map. By leveraging the object map,

the object detector is improved under more challenging con-

ditions. Xiao et al. [12] used object detector to eliminate the

negative impact of dynamic objects, and the location accuracy

is improved. Sharma et al. [13] proposed to reconstruct the

environment with a graph of objects. A novel compositional

rendering method is used to enable reliable frame-to-model

RGB-D tracking. Nonetheless, the inclusion of object states

into SLAM state estimation is not studied in these works.

Salas-Moreno et al. [5] and McCormac et al. [6] proposed

RGB-D systems that detect objects by matching prior 3D

models of known objects. However, the cost of build prior

models is non-negligible. Naturally, academia has developed a

considerable interest in monocular 3D object detection without

prior models. Nicholson et al. [14] proposed to use dual

quadrics to represent objects as ellipsoids, whereas our method

use cuboids representation which is prevalent in autonomous

driving like [3] [4] [15]. Yang and Scherer [15] proposed

to generate cuboid landmarks with a 2D object detector and

Vanishing Point(VP) technique. The generated cuboids are

optimized together with camera poses and points. The authors

proposed a simple method to associate cuboids by counting

the shared map points. However, the method is not applicable

in the situation where few map points are available in the map.

B. Data Association

To use objects in SLAM, the correspondences between mea-

surements and objects must be established first. The problem

is also known as data association, which is historically studied

in the target tracking literature [16] [17] [18] [19]. Recently,

Muresan and Nedevschi [17] proposed to use the Markov

decision process to associate cuboids detected with LiDAR.

Ikram and Ali [16] proposed a variant of the nearest neigh-

bor data association method. However, unlike our work, the

object data association results are not exploited in the SLAM

context. The correspondence variables for data association are

discrete whereas the camera poses and landmark positions

are continuous. Bowman et al. [20] proposed to solve the

two problems iteratively. They considered probabilistic data

association (PDA) and leverage the Expectation-Maximization

(EM) algorithm to find the correspondences between observed

landmarks. Then, the poses of landmarks and camera trajectory

were optimized with the correspondence variables fixed. We

followed the two-phase iteration strategy but with a different

cuboid data association approach. Elfring et al. [21] formally

formulated data association problems in semantic SLAM,

and applied Multiple Hypothesis Tracking (MHT) approaches.

Wong et al. [22] had a detailed discussion of the limitations

of MHT, and proposed a clustering-based approach to the

problem. The clustering model with an unlimited number
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of clusters is based on the Dirichlet process mixture model

(DPMM). However, the approach was only applied to land-

mark estimations. Zhang et al. [23] also studied the data

association problem with a hierarchical topic model based on

the hierarchical Dirichlet Process. We novelly incorporate the

cuboid measurement into the DPMM but without hierarchical

structure. After the cuboid measurements are associated, we

further jointly optimize cuboid positions and sizes, map points

and camera poses.

III. METHODS

A. 3D Cuboid Estimation in monocular images

As aforementioned, we aim to detect objects without prior

models in monocular images. We adopt cuboid representation

for 3D objects in SLAM. The detected 3D cuboid is denoted

as C “ tR,L, Su, where L “ rx y zs⊺ represents the center

position of the cuboid and the object scale S “ ra b cs⊺ is

the length along each axis of the object coordinate frame. The

object coordinate frame is built at the center of the cuboid.

The object class is obtained through 2D object detector [7]

while the object position, orientation and scale are obtained

through a similar approach used in [15]. Other monocular 3D

object detection methods like [4] can also be used.

B. Cuboid Data Association

1) Dirichlet Process and DPMeans method: In the seman-

tic world modeling, most of the objects do not change in

a short time, that is, most objects can be assumed to be

static. Therefore, the time sequences of the measurements are

irrelevant. The measurement-to-object association problem can

be reduced to a clustering problem [24].

Now let O fi tpck, Lk, SkquMk“1
denote the set of all

observations in a cluster, where c denotes object class and

the observations in the cluster are indexed through k “ 1 to

M . The probability of a new object measurement pc, L, Sq
belongs to a certain cluster is:

ppc,X, S|Oq
“ ppc |OqppL |OqppS |Oq
“ ppc | tckuqppL | tLkuqppS | tSkuuq. (1)

Notice that the cluster index is dropped for brevity, and the

first equation assumes independence of object class, pose

and shape, and the second equation follows from conditional

independence properties. The first term on the right-hand

side of (1) is the class predictive probability given all past

observations of the same object. The second and third terms

are predictive probabilities for pose and scale. Denote the class

set as C “ t1, Cu, the posterior probability of a cluster class

to be c1 is:

ppc1|tckuq9pptcku|c1qppc1q “
«

ź

k

ppck|c1q
ff

ppc1q, (2)

where ppc1q is the prior, and ppck|c1q is the class measure-

ment probability. Then the class predictive probability can be

calculated as:

ppc|tckuq “
C
ÿ

i“1

ppc|c1

iqppc1

i|tckuq. (3)

Again, the ppc|c1

iq is the class measurement probability.

ppc1

i|tckuq is the class posterior probability from (2). Under the

static world assumption, the measurements of object location

rx y zs⊺ and scale ra b cs⊺ both follow Gaussian distributions

with unknown means and covariance. To simplify the instruc-

tion of conjugate prior of the normal distribution, we further

assume that the x, y, z components of the cuboid center and

a, b, c components of the cuboid scale are independent:

ppL|tLkuq “ ppx|txukqppy|tyukqppz|tzukq (4)

ppS|tSkuq “ ppa|taukqppb|tbukqppc|tcukq (5)

Each observation is assumed to be a single variable Gaussian

distribution as illustrated in Fig. 3. Rather than simply assum-

ing a fixed covariance of the measurements, we use a standard

conjugate prior for Gaussian noise model with unknown mean

and precision, namely the NormalGammapl, τ ;λ, ν, α, βq
distribution. It is a continuous probability distribution with

two variables and four parameters. The marginal distribution

of the mean l is a non-standard t-student distribution:

ppl|txu;λ, ν, α, βq “ t

˜

l; 2α1, ν1,

c

β1

λ1α1

¸

. (6)

According to [25], the posterior predictive distribution for the

next location observation x can be acquired as:

ppx|txu;λ, ν, α, βq “ 1?
2π

β´α´

β`α`

λ´

λ`

Γpα`q
Γpα´q , (7)

where the hyperparameters with ´ superscripts are previous

values exclude x, and ` are updated values with the current

n observations of x according to the following updating rule

in (8)-(11):

λ1 “ λ ` n, (8)

ν1 “ λ

λ ` n
ν ` n

λ ` n
µ̂, (9)

α1 “ α ` n

2
, (10)

β1 “ β ` 1

2

ˆ

nŝ2 ` λn

λ ` n
pµ̂ ´ νq2

˙

, (11)

where µ̂ and ŝ2 are the sample mean and covariance, respec-

tively. The probability of a new cuboid measurement k at time

t fitting into an existing cluster can be calculated efficiently by

substituting each component with (7) into (4)(5), and further

substitute (3)(4)(5) into (1). Then, the measurement is assigned

to the cluster j which has maximum probability, or a new

cluster is created if the maximum probability is below some

threshold Υ. The association result denoted as a pair pzt,k, jq
is then added to the data association set D.
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(b) Top-View of the cluster (a) A Cluster of cuboid observations (c) Try to fit a new observation

into one of existing two clusters

(e) Fitting with history classes (f)  

A simpified 2D illustration

(d) Illustration: Ftting each single component in
                  into existing two 1-D clusters

Fig. 3: Here is a brief illustration of how the posterior predictive probability of fitting a new cuboid observation into existing

clusters is calculated: (a) illustrates several cuboid observations forming a cluster due to perception noises. (b) Top-View of the

cluster with dots represents the cuboid center positions. (c) A simplified 2D illustration of how to fit a new cuboid (represented

as a red dot) into each of the exiting two clusters modeled as 2D Gaussian distributions centered at green and blues dots

respectively. (d) We further assume each component of location (x,y,z) and shape scales (a,b,c) are independent, then each

component is fitting into 1D Gaussian distribution with unknown mean and variance. Finally, (e) and (f) show how the class

of the new cuboid is fitting into history observed classes by the analogy of putting a new colored ball into two each urn with

noises (represented as black and yellow dots).

2) Robust SLAM: We maintain an object belief propagation

process to evaluate the belief of each cluster of measurements

corresponding to an actual object. The intuition is that the

more likely a cluster is an actual object, the more consistent

the measurements are. We examined the consistency of the

measurements with the object class, location, and scale of the

cuboids. For each object, the final belief of an object given a

cluster of observations can be acquired by:

belpOq “ p1 ´ pp0|tckuq
ź

x,y,z
a,b,c

tpl; 2α1, ν1,

c

β1

λ1α1
q (12)

The first term of the right-hand side is the true detection prob-

ability. The second term is from (6). And the hyperparameters

of T-student distributions are different for each component of

tx, y, z, a, b, cu. To perform Robust SLAM, only object whose

belief is over a certain threshold Φ is considered valid, and

all observations of valid objects are collected as known data

associations.

C. Pose Graph Optimization

With known data associations D “ tpzt,k, jqu, all the

variables to be optimized are now continuous. Given cuboid

object observations Z “ ttpZt,k, St,kquKk“1
uTt“1

, where Zt,k

represents the k-th measurement of the center of the cuboid

at time t, we are now able to perform joint optimization of

cuboid landmarks L “ tpL, SqMj“1
u and camera trajectory

X “ tXtuTt“1
. The MAP estimation problem can be formu-

lated as:

X,L “ argmax
X,L

ppX,L|D,Zq (13)

When applying the Gaussian noise model to cuboid obser-

vations, the MAP estimation problem of (13) is equivalent to

Bundle Adjustment(BA) and can be solved with the g2o frame-

work [26]. The BA problem can be formulated as optimization

of a non-linear least square summations:

X̂, L̂ “ argmin
X,L

ÿ

t,k

∥epZt,k;Xt, Ljq∥2`
ÿ

i,j

∥epSj ;Pi, Ljq∥2 `
ÿ

t,i

∥eppt,i;Pi, Xtq∥2 (14)

The epZt,k;Xt, Ljq is the camera-cuboid measurement error.

epSj ;Pi, Ljq is the cuboid-point measurement error. It trans-

forms the map point to the cuboid frame and punishes the cost

when the map point is outside the cuboid. eppt,i;Pi, Xtq is the

canonical 3D map point to 2D keypoint re-projection error.

D. Final Algorithm

The whole algorithm is described in Algorithm 1. During

the initialization step, all the locations of landmark observa-

tions L are dead-reckoned with odometry data O1:T . Then

data association is carried out as described in section III-B1.

Instead of a single-step process, we iterate the whole process

alternating between data association and pose optimization,

which can revise incorrect associations due to the accumulated
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Only a monocular camera

of raspberry PI used, the

height is xed at 12.1 cm

above the ground.

Fig. 4: Turtlebot3 Burger: a raspberry PI camera is mounted

on the second Waffle-plate layer.

odometry error. For each new cuboid observation, the predic-

tive probability predpiq conditioning on existing clusters Oi

is calculated according to (1). If the maximum probability is

below a certain pre-set threshold, a new cluster is created. Oth-

erwise, this observation is assigned to the existing cluster O.

Repeat until all observations are processed. Next follows the

pose optimization process. Object appearances including sizes

and positions are updated after optimization. Specifically, the

object position L is updated with the joint optimization result

and the object size S is updated with (9) which is the mean of

all observations. As mentioned in section III-B2, ambiguous

data associations are discarded during the pose optimization

process. Since the camera trajectory and landmark poses are

converging at each iteration, more and more associations are

found. The final number of objects (clusters) converges after

a few iterations.

IV. EXPERIMENTS

A. Simulated Dataset

We first demonstrate the algorithm with a simulated dataset.

To compare our algorithm with [27], we followed a similar

experiment method. In this simulation, 15 objects of 5 classes

are randomly generated in a 2D plane. An 800 time-steps

trajectory was simulated in a 10mˆ10m room. During each

time step, landmarks within 4m distance to the robot were

observed. Different from the original paper, to demonstrate

the effectiveness of the object belief propagation and robust

data association, not only the Gaussian noises are added to

odometry and landmark location measurements, but also the

class prediction errors are simulated according to a Confusion

Matrix shown in Table I.

Fig. 5a shows the ground truth trajectory, and different

marks and colors represent different classes of landmarks.

Fig. 5b shows the robot’s open-loop trajectory via dead reck-

oning. All the observed landmarks are also plotted without

association. Due to the accumulated odometry noise, there

is significant drift in robot location and so are the landmark

positions. Besides, in some clusters, there are different classes

of landmarks due to the designed class prediction Confusion

Matrix in Table I. We compare our method with Maximum

Likelihood Estimation(MLE) with distance only and Non-

parametric SLAM (NP-SLAM) [27]. NP-SLAM considered

both object class and position when performing data asso-

ciations. The resulting trajectory is acceptable for MLE as

Algorithm 1: Dirichlet Process Object Clustering For

Cuboid Data Association

Input: Odometry measurements O1:T , Cuboid

measurements Zt,k

Output: Poses X1:T , Landmarks L1:M , Data

Associations D

1 Set X0 to Identity matrix representing world frame,

Initialize X1:T , L with open loop predictions

2 while X,L not converged do

3 //phase one, data association:

4 set M “ 0,L

5 for each t in 1 : T , each k in 1 : Kt do

6 Compute the predictive probability of fitting

current measurement into each cluster

according to (1):

7 for i in 1 : M do

8 predpiq “ ´log ppct,k, Xt, St,k|Oiq
9 Assign Dt,k to be cluster m with maximum

probability or create a new cluster if the best

predictive probability is below some threshold:

10 if minppredq ą Υ then

11 M “ M ` 1

12 create new cluster LM with current

measurement, and initialize βM “ β0

13 else

14 Dt,k “ argmini predpiq
15 update existing cluster Li:

16 Oi “ Oi Y Zt,k

17 βipct,kq “ βipct,kq ` 1

18 update hyperparameters λ, ν, α, β according

to (8)-(11)

19 update belpiq according to (12)

20 //phase two, joint optimization of landmark

positions and trajectory

21 for each l in 1:M do

22 if belplq ă Φ then

23 mark Ll as invalid, and remove from L

afterwards

24 optimize X0:T ,L with pose graph solver according

to (14)

25 update X, prepare for next loop

shown in Fig. 5c, However, the estimated landmark number

74 is significantly larger than the ground truth 15. The reason

is that ML lacks the mechanism to identify an object, it just

associates each measurement to the nearest object. The NP-

SLAM produces a reasonably accurate trajectory, but it also

fails at estimating the right number of landmarks. Our method

associates the right number of landmarks as shown in Fig. 5e.

The comparison of the resulting trajectory is given in Fig. 5f.

B. Turtlebot3 Burger Collected Dataset

To execute our algorithm in a real-world environment, the

robot Turtlebot3 Burger was adopted to collect a sequence of

images in the office, as shown in Fig. 4. A raspberry PI camera
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TABLE I: Confusion Matrix used in simulation

Actual Label
Predicted Label

class 1 class 2 class 3 class 4 class 5

class 1 0.8 0.06 0.04 0.04 0.01
class 2 0.06 0.78 0.05 0.04 0.02
class 3 0.09 0.03 0.77 0.05 0.01
class 4 0.09 0.03 0.06 0.75 0.02
class 5 0.04 0.03 0.07 0.02 0.79
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(f) Trajectory comparison

Fig. 5: (a) shows the ground truth robot trajectory and classes

and positions of landmarks. (b) shows the simulated noisy

trajectory, and the open-loop perception of landmarks without

data association. (c) shows the result of Maximum Likelihood.

(d) shows the result of NP-SLAM [27]. (e) shows the data

association result of our method. (f) compares trajectories of

different methods.

was mounted at the second layer of the Waffle-Plate. The robot

was driven manually to circle around clustered items placing

on the ground, including tomatoes, pears, oranges, apples, and

cans. 3 configurations are shown in first column of Fig. 8. The

goal is to estimate the robot trajectory along with the classes,

locations, and sizes of the items.

1) Implementation: Our system is built based on ORB-

SLAM2 [28], the tracking module is used to provide initial

odometry data. The data association part of Algorithm 1 is

written in C++ and the local bundle adjustment is implemented

with g2o framework [26]. After map initialization, the cuboids

C “ tpc, L, Squ detected in the first two frames are used to

scale the map to align the cuboid detection scale with the

monocular map scale. The scaled map initialization is shown

in Fig. 2. It can be seen from the right part of the picture that
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Fig. 6: Data association accuracy analysis with different Υ

settings in the Turtlebot3 indoor experiment. The ground truth

number of objects is 5 shown in dotted black line. Best

association accuracy is achieved when Υ=6.

most map points fit in the cuboid, which shows the success of

scale alignment between cuboid detection and ORB-SLAM2

map creation.

2) Qualitative results: Fig. 1a shows an ambiguous bound-

ing box produced by YOLO2 [7], the box contains two items

but was predicted as one. In such cases, it is not surprising

that the cuboid detection accuracy is affected, and even worse,

a naive strategy could make a false association to this non-

existing apple. As shown in Fig. 2, our resulting map is not

affected by this ambiguous detection. This could be partially

attributed to the effect of robust SLAM described in section

III-B2 and partially attributed to the consideration of object

sizes when matching to an existing cluster. As aforementioned,

another challenge is class prediction error as shown in Fig. 1b,

where the apple is marked as an orange. The results in Fig.

1d shows that our method is robust to low prediction error for

the reason that we maintained an object belief when making

association decisions.

3) Quantitative results for association: To quantitatively

analyze the effectiveness of our data association algorithm,

3 different configurations of 11 to 13 items are collected, as

shown in column (a) of Fig. 8. When the robot circles around,

frequent occlusions happens in all the scenes. In the config-

urations, some items with the same class are closely placed

together to make the data association even more challenging.

We compared our method with three other commonly adopted

techniques.

The first is Intersection Over Union (IOU), which calculates

2D box IOU for each candidate cuboid with existing cuboids.

When trying to associate cuboids in a new frame, the IOU

method back projects all existing cuboids in the local map back

to this frame, and then each candidate cuboid is associated

with the one that has the maximum IOU value. Another

technique is Shared Map Points counting (SMP), which counts

the shared map points between each candidate cuboid with

all existing objects in the map, then the candidate cuboid is



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Data association

with detected cuboids

`

Fig. 7: Mapping result (top view) for the KITTI odometry

sequence 07. In addition to the black map points and green

KeyFrames, detected cars are rendered as colored rectangles.

7 colores are repeatedly used to tint the cuboid for better

visualization. A KeyFrame is selected to demonstrate the data

association between cuboid observations and existing objects.

associated with the one that shares most map points with it.

The next technique is Maximum Likelihood Estimation(MLE)

[29], which simply associates each new cuboid to the closest

one. In all 3 configurations, our method works reliably as

shown in Table II. To perform fair comparisons, the final

number of objects is filtered for each method. For example,

if an object was observed for only a few frames, the object

is ignored. Our method demonstrates superiority both before

and after filtering.

4) Threshold setting: The association accuracy is shown in

Fig. 6. For configuration 1 in Fig. 8, Υ is set to different

values to demonstrate the impact of this threshold in data

association. When Υ is 10, almost no new object is created

even if the observation does not fit into any existing clusters.

Consequently, the association can be wrong. The tracking is

quickly failed due to the detrimental effect of false associa-

tions. On the other hand, when Υ is 3, too many new objects

are created even if the observation belongs to an existing

cluster. Consequently, some objects can be associated with

more than 1 object in the pose graph. Although this does

not break the tracking, the constraints provided by the object

landmarks are weakened. Therefore, the strategy to set Υ is as

follows. First, try some large value to not break the tracking

and then gradually decrease the value to the best one.

C. KITTI Odometry Dataset

Lastly, to validate our data association method on a larger

outdoor environment, we run our system on KITTI [31] odom-

etry dataset. Most sequences in KITTI odometry benchmarks

are static with a few dynamic objects such as cyclists. Our data

association method performs well in all the sequences except

01, 02, and 04 which are highly dynamic. Data association

in algorithm 1 is carried out whenever a new KeyFrame is

created. The constant Υ is set to 6. The bundle adjustment

of camera poses, cuboids, and points is performed locally

in the LocalMapping thread and globally in the LoopClosing

thread. Besides, the iteration cycles for data association and

joint optimization are limited to 1 for efficiency.

1) Mapping With Cuboids: There are hundreds of cars and

a few cyclists used as landmarks in the KITTI dataset. The

computation cost of line 8 in Algorithm 1 which tests new

cuboid fitting into existing clusters can be intimidating. To

reduce the computation cost, only objects located in front

of the camera are considered. This greatly improves the

computation efficiency of the algorithm when the number of

landmarks is large. To detect cuboids with true scale, the

prior knowledge of camera height is used. The mapping result

including the detected cuboids for sequence 07 is shown in

Fig. 7. Other sequences are shown in Fig. 10.

2) Scale Drift and Pose Estimation: Because the cuboid

detections are performed in each single frame, the scale

of the cuboid measurement is consistent. When the cuboid

measurements are incorporated in the bundle adjustment, they

implicitly provide constraints for the scale. As a result, the

scale drift of monocular SLAM is significantly reduced. It

can be seen from Fig. 9 that, even without loop closure,

the trajectory of the proposed method is much closer to the

ground truth trajectory than the original ORB-SLAM2 (Mono).

Duncan et al. [30] and CubeSLAM [15] and Dynamic-SLAM

[12] also studied using objects to reduce monocular scale drift.

We compare the RMSE of the Absolute Trajectory Error (ATE)

[32] with all of them in Tab. III. Our method achieves the best

localization accuracy in most sequences.

D. Loop Closing

Loop closing is essential in SLAM systems to reduce

accumulated drift when a robot returns to a previously visited

place. In this section, we show our cuboid landmarks can be

used to assist loop closing. In the indoor Turtlebot3 experiment

introduced in Section IV-B, the drift is insignificant. Because

the correct associations of landmarks both observed by early

KeyFrames and recent KeyFrames automatically formed a loop

in the pose graph, the successful mapping result (Fig. 2) can

be obtained even without loop closing. On the contrary, in

some large KITTI datasets, the drift could be so prominent that

the objects observed by recent KeyFrames formed different

clusters from previous ones.

Traditional visual SLAMs detect loops based on appear-

ances. OBR-SLAM2 detect loops by computing the difference

of visual Bag of Words (Bow) of each KeyFrame. After a loop

is detected, the similarity transformation matrix Scm P simp3q
between current KeyFrame Tcw and the matched KeyFrame
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TABLE II: Comparison of different method’s data association results for 3 different configuration of items

Dataset
IOU SMP MLE

Ours Ground Truth
Before Filter After Filter Before Filter After Filter Before Filter After Filter

Conf. 1 25 19 43 29 33 28 13 14

Conf. 2 16 13 33 23 18 16 11 11

Conf. 3 20 17 26 19 24 15 11 11

TABLE III: Monocular Camera Pose Estimation Error on KITTI Odometry Benchmark

Sequence 00 03 05 06 07 08 09 10 Mean

ATE RMSE (m)

ORB-SLAM2(Mono) No LC 108.2 66.7 136.4 81.6 110.2 132.9 58.8 42.1 92.1

Duncan et al. [30] 73.4 10.7 50.8 73.1 47.1 72.2 31.2 53.5 51.5

CubeSLAM [15] 13.9 3.79 4.75 6.98 2.67 10.7 10.7 8.37 7.73

Dynamic-SLAM [12] 4.436 0.828 5.724 12.455 1.823 27.487 9.285 8.909 8.86

Ours 4.33 3.29 5.47 5.68 2.48 11.8 7.2 10.9 6.39

(c) IoU (d) SMP (e) MLE

1

2

3

(a) 3 di erent con gurations (b) Ours

Fig. 8: Cuboid mapping results for different methods, the first column (a) shows the picture of the configuration of items. The

other columns from left to right, shows the result of Ours in column (b), Intersection over Union (IOU) in column (c), Shared

map points counting (SMP) in column (d), Maximum likelihood estimation (MLE) in column (e) for different 3 configurations

of items.

TABLE IV: Relative Pose Error of camera trajectory with or

without cuboids during loop closing

KITTI sequences 00 05 07 08

RPE RMSE (m)
No Cuboids 0.239 0.269 0.104 0.149

Cuboids 0.144 0.171 0.087 0.147

Tmw is computed. Then the simp3q transformation Scw can

be obtained through ScmSmw, where Smw is converted from

Tmw with scale 1. We further project the objects observed

in the current KeyFrame and the matched KeyFrame through

Scw and Smw respectively. Finally, the data association is

carried out under the same scale. It’s the same motivation as

fusing map points at both sides of the loops, more matches

provide more constraints. Even better, the cuboids provide

extra constraints for the scale. In the KITTI benchmark, loops

only exist in sequences 00, 05, 07, and 08. To quantitatively

analyze the effect of using cuboids during loop closing, we

present the Relative Pose Error (RPE) of camera trajectory

with cuboids in the first row of Tab. IV and RMSE without

cuboids in the second row.

TABLE V: Runtime Breakdown For Our System

Component Tracking
Cuboid

Detection
Data

Association
Joint

Optimization

Time (ms) 33.5 87.9 26.2 284.7

E. Time Analysis

Finally, we analyze the computation cost of our system. The

system runs on Intel CPU i7-9700k at 3.6GHz except for the

cuboid detection component, which runs on a separate Nvidia

GPU RTX3090. The deep learning based cuboid detection

component runs at about 11 frames per second. Although it

does not add extra computation cost to the CPU, the frame

rate of the tracking is slightly lowered to match the cuboid

detection speed. Therefore, we manually set the frame rate to

11 in KITTI experiments. The data association and joint opti-

mization components run efficiently in separate local mapping

and loop closing threads, and they don’t need to run in real-

time. The inclusion of objects in joint optimization slightly

increases the time of bundle adjustment. All the components

average running times are presented in Table V.
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Fig. 9: Camera trajectory comparison between ORB-SLAM2 (Mono) with our method on KITTI odometry benchmark. Black

dotted lines are the ground truth. Blues lines are ORB-SLAM2 with significant scale drift. Green lines are Ours with scale

drift reduced by incorporating cuboid measurements. Loop closing is disabled for both methods.

V. CONCLUSIONS

In this work, we have proposed a new monocular se-

mantic object association algorithm using cuboid detections.

We showed that cuboid detection can greatly benefit data

association problems, which plays a vital role in semantic

SLAM. The idea is based on the Dirichlet Process Mixture

Model under two assumptions. First, most objects in the

environment are static at least during a few local frames, and

this allows the time index to be dropped when performing

multi-frame data associations. Second, the measurement noise

covariance is small. The cuboid detection accuracy is mainly

affected by the 2D bounding box and image distortion. In the

experiments, the 2D bounding box is accurate enough and

the distortion is negligible. Thus this assumption is easily

satisfied. The result is that the association problem reduces

to a clustering problem. The main contribution of our work

is combining cuboid detection with data association. Cuboid

landmarks have properties like semantic class, location, and

size, and thus are more distinguishable than pure geometric

points. Experimental results showed that our method is more

robust to ambiguous detections and false class predictions.

The system runs about 11 frames per second on a Intel i7

CPU with seperate Nvidia GPU. Compared with other state

of the art monocular SLAM methods, we observed over 17%

overall improvement in terms of root mean squared error over

translational components of absolute trajectory error on the

public KITTI odometry dataset. In the future, we plan to study

object reconstruction using a monocular camera and integrate

the inference of the object shapes with SLAM optimization.
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for semantic world modeling from partial views,” Int. J. Robot. Res.,
vol. 34, no. 7, pp. 1064–1082, 2015.

[23] J. Zhang, M. Gui, Q. Wang, R. Liu, J. Xu, and S. Chen, “Hierarchical
topic model based object association for semantic slam,” IEEE Tran.

Vis. Comput. Graphics, vol. 25, no. 11, pp. 3052–3062, 2019.

[24] K. Jiang, B. Kulis, and M. Jordan, “Small-variance asymptotics for
exponential family dirichlet process mixture models,” Adv. Neural. Inf.

Process. Syst., vol. 25, pp. 3158–3166, 2012.

[25] J. M. Bernardo and A. F. Smith, Bayesian theory, vol. 405. John Wiley
& Sons, 2009.
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